Covariates of prehypertension in Oman
Sanam Anwar1,2, Bushra Aleem2, Ghadeer Jamal Moslhe3, Hajir Hamed Rashid4

1HOD, 2-4 Resident, Dept. Epidemiology & Public Health, College of Medicine & Health Sciences, National University of Science and Technology, Oman

*Corresponding Author: Sanam Anwar
Email: sanam@omc.edu.om

Abstract
Introduction: The WHO report in 2010 on country profiles estimated that non-communicable diseases account for nearly 83% of the total deaths in Oman. Prehypertension can predict cardiovascular morbidities.

Objectives: The study was carried out with the objective of identifying important covariates of prehypertension in Oman.

Materials and Methods: In the cross sectional study, a structured questionnaire was used for data collection which had details on sociodemography along with measurements of blood pressure and anthropometry. Binary logistic regression was used to identify important predictors of prehypertension. Wald’s test was used to see the significance of coefficients of regression.

Results: 233 individuals (46.6%) suffered from prehypertension out of the total 500 study population. Mean age of prehypertensives was 42.48 ±1.2. Most of them (70.8%) were males and 29.2% were females. 49.9% had secondary education and 46.4% had higher secondary education. Wald test was significant for gender (Wald= 7.263, p=0.007); sedentary occupation (Wald= 4.518, p=0.034) and age (Wald= 10.870, p=0.001). Percentage accuracy of classification of the model was 78.8%. The predictor model (chisquare =29.6, p=0.000) accounted for 14.7% variability in prehypertension. Area under the curve was 0.725, p=0.000.

Conclusion: Age, occupation and gender were seen as important predictors of prehypertension in the study population.

Keywords: Prehypertension, covariates, Age, Education, BMI.

Introduction
Hypertension is a known predictor of cardiovascular disease, cerebrovascular accidents, and death with regionally variable and increasing magnitude.1 Worldwide the prevalence of hypertension varies from 5.2% to 70.7% in the adults, and it is estimated that more than 1.5 billion individuals have hypertension currently.2 The WHO report in 2010 on country profiles estimated that non-communicable diseases account for nearly 83% of the total deaths in Oman.3

The concept of prehypertension has been defined to draw attention to the increased risks resulting from increased blood pressure. In 2003, the seventh Report of JNC-7 proposed prehypertension as a category between normal blood pressure and hypertension.4 They defined prehypertension as systolic blood pressure of 120–139 mmHg and/or diastolic blood pressure of 80–89 mmHg in adults. According to JNC-7, prehypertensive individuals have a greater risk of getting hypertension than those with normal blood pressure levels.5 Prehypertension was known by different names in the past, some called it transient hypertension or borderline hypertension and others just named it as high-normal BP. Today the terminology has changed, but prehypertension is considered as a precursor of hypertension and is known to be associated with morbidity and mortality from cardiovascular disease. Moreover, prehypertension is often closely linked to target organ damage, such as early arteriosclerosis, small vascular damage, coronary artery calcification, vascular remodeling, and left ventricular hypertrophy.6,7

The Framingham Heart Study reported that within 4 years, 50% of patients 65 years of age with blood pressure of 130 to 139 systolic and 85 to 89 mm Hg diastolic progressed to hypertension.5 Player et al reported in his study that the patients who had prehypertension, 26% developed hypertension within 4 years.8 Fareed et al reported that prehypertension was associated with a 1.7 times higher likelihood of coronary artery disease and a 3.5-fold increase in myocardial infarction.9

The Oman health survey 2008 found that 19.6% males and 15.2% females had prehypertension.3 Few studies from urban India reported 32% prevalence of prehypertension.10,11 The pooled prevalence of prehypertension from meta-analysis of worldwide studies was reported as 38%.12 Prehypertension with the presence of obesity may further increase the correlation of developing hypertension. Several studies have reported the association of higher waist circumference with a greater prevalence of prehypertension and hypertension.13 Not many studies have been conducted in Oman in the field of prehypertension. In prediabetic adults in Oman the prevalence of prehypertension was reported as 54.1% in Omanti adults.14 Another study in Oman observed 45% prevalence of prehypertension in population sampled from national screening program of chronic non communicable diseases in primary health care institutions.15 Thus the present study was carried out with the objective of identifying important covariates of prehypertension in Oman.

Materials and Methods
A Cross sectional study was done in South Batinah governorate in Oman for a period of 6 months in 2014. The participants were visitors seated in the visiting area who accompanied the patients coming to the Rustaq polyclinic. The inclusion criteria was adults more than 18 years of age and those who gave informed consent to participate in the study. Visitors who either did not give consent to participate in the study or were less than 18 years age were excluded.
from the study. The estimated sample size was 469, considering the prevalence of prehypertension in Omani adults as 45%, with 10% variability in the estimated prevalence. Simple random sampling was used to identify the participants. A total of 500 people who gave consent participated in the study. Written informed consent was taken from all the participants. Research approval was given by the Ministry of Health. A prevalidated structured questionnaire was used to collect information on socio demography along with anthropometric and blood pressure measurements. Blood pressure was measured with sphygmomanometer. The average of two readings was used to define prehypertension. WHO guidelines were used to measure weight and height. Body mass index was calculated by dividing the weight (in kg) by height in meter squared. BMI classification based on WHO as<18.5 (underweight), 18.5 to 24.9 (normal), and ≥25 (overweight) was used. Waist circumference was measured to the nearest 0.5 cm by non-elastic measuring tape at the midpoint between the lower margin of the last rib and the top of the hip bone. Waist circumference in cm was divided by height in cm to get the waist height ratio. Cut off of 0.50 was taken for both males and females.

Data was entered and analyzed in SPSS. Difference in frequencies was tested by chi square test and means were compared by unpaired t test. Multiple logistic regression stepwise method was fitted to identify important predictors of prehypertension versus normal blood pressure status with the adjusted odds ratio and 95% confidence intervals. A p value of less than 0.05 was considered statistically significant. Wald’s was used to test the significance of regression coefficients. Model was tested for fitness of data by Hosmer Lemeshow test, area under ROC curve and Nagelkerke R² square and percentage accuracy of classification.

Results

Out of the total 500 participants, 233 (46.6%) individuals had prehypertension;203 (40.6%) had hypertension and 64 (12.8%) were normotensive. Prehypertensive population was made up of 165 males (70.8%) and 68 females (29.2%). Mean age of prehypertensives was 42.48 ±1.2 which was significantly higher by 1 year, likelihood of prehypertension increased significantly by 1.039, p=0.000. Males had 1.7 times, and those not doing regular physical activity had 1.5 times increased likelihood of developing prehypertension but the result was not statistically significant. People who attained only primary education had 2.6 times increased likelihood of developing prehypertension (p=0.006) compared to the participants with higher education. People with sedentary occupation had 1.9 times more likelihood of developing prehypertension (p=0.027). Participants with higher waist height ratio had 2 times more likelihood of developing prehypertension (p=0.018).

To develop a model for predicting prehypertension, multivariate binary logistic regression was performed by stepwise method. The model showed that age, occupation and gender were significant predictors of prehypertension, chisquare =29.6, p=0.000. Wald test was significant for gender (Wald = 7.263, p=0.007); sedentary occupation (Wald= 4.518, p=0.034) and age (Wald= 10.870, p=0.001). Percentage accuracy of classification of the model was 78.8%. Nagelkerke R² indicated that model accounted for 14.7% variability in prehypertension. Area under the curve was 0.725, p=0.000 and insignificant Hosmer-Lemeshow (p>0.05) suggested that the model well fitted the data. Multivariate analysis showed that age, occupation and gender were important predictors of prehypertension in the study population (Table 3).

Table 1: Risk factors of prehypertension

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (%)</th>
<th>Normotensive (%)</th>
<th>Prehypertensive (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>147</td>
<td>26 (17.7)</td>
<td>68 (46.3)</td>
<td>0.081</td>
</tr>
<tr>
<td>Male</td>
<td>353</td>
<td>38 (10.8)</td>
<td>165 (46.7)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher secondary</td>
<td>179</td>
<td>32 (17.9)</td>
<td>83 (46.4)</td>
<td>0.016</td>
</tr>
<tr>
<td>Secondary</td>
<td>109</td>
<td>18 (16.5)</td>
<td>54 (49.5)</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>212</td>
<td>14 (6.6)</td>
<td>96 (45.3)</td>
<td></td>
</tr>
</tbody>
</table>

The Journal of Community Health Management, October-December, 2018;5(4):192-196 193
The present study showed that prehypertension affects 46.6% of the Omani population, affecting more males than females. A similar prevalence of 45% prehypertension was reported by another study in Oman. A similar prevalence of 45% prehypertension was reported by another study in Oman. While a higher prevalence of prehypertension of 54.1% was reported by Ganguly et al in prediabetic Omani adults. Similar findings were reported in other studies; in Malaysia, it was reported 40.2% and in another study 47.4%. While some published studies had lower figures; 36.1% in Brazilian adults and 33.7% among adults in southern Iran. Ferguson et al reported prevalence of 30% prehypertension in Jamaica and found the prevalence higher in males than in females. Studies from northern India and southern India also found a higher prevalence of prehypertension in males and increasing age. Shahi et al reported prevalence of 46.9% prehypertension in females which was similar to this study (46.3%). Ali et al in Oman also reported more males (46%) than females (44%) with prehypertension. Previous studies have observed higher levels of hypertension in postmenopausal than in premenopausal women. Therefore, frequent monitoring is needed for
early detection of hypertension during the menopausal transition. Most of the prehypertensive population are left unrecognized which adds to the hidden burden of the problem.28 This phenomenon would further deteriorate the existing burden of non-communicable diseases worldwide.29

In the present study prehypertension was more (47.7%) in people with sedentary type of occupation involving less physical activity and mean BMI of prehypertensives was also higher than normotensives (26.13±0.3). A national survey in United States observed that 60% of American adults had either hypertension or prehypertension; and they also reported that older people, overweight population were affected disproportionately.30 Their findings were in agreement with the present study. Some other studies in Turkey and China also observed that obesity and weight gain is an important determinant of hypertension.31–34 Some studies showed that central obesity was significantly associated with prehypertension35,36 which is similar to the present study findings where significant number of prehypertensives (44.2%) had more than the normal waist height ratio.

Age (OR=1.1), male gender (OR=2.3) and sedentary occupation (OR=1.9) were found to be important determinants of prehypertension in the present study. This was similar with the findings of Mona Soliman et al31 and Samuel et al.37 Ganguly et al14 in Oman also found that males were at a higher risk of developing prehypertension (OR=2.3); those with higher BMI had a twofold more risk. Ali et al15 also found age as an important correlate of prehypertension with a similar odds ratio as the present study. The cross-sectional study design and the conduct of the study in one area was one of the limitations of this study. Thus it did not represent the overall picture of adults throughout Oman. Keeping this in mind the causal relationship between risk factors and the development of prehypertension is limited.

Conclusion

Prehypertension was present in 46.6% individuals. The univariate regression analysis showed that the likelihood of prehypertension increased significantly with increasing age, in males, those not doing regular physical activity, people who attained only primary education, those with sedentary occupation and with higher waist height ratio. However on multivariate analysis age, sedentary occupation and male gender turned out to be important determinants of prehypertension in this study.

This study emphasizes the importance of detecting prehypertension in the early phase of life to combat its associated cardiovascular morbidities.

Recommendations

Awareness programs need to be tailor made for prehypertensive population based on life style modification related preventive strategies. Role of increased physical activity and weight reduction is of utmost importance as it is the biggest modifiable risk factor for prehypertension. More so if the young adults are screened early and targeted with good health education initiatives, the onset and progress of prehypertension can be halted with increasing age thus trying to combat the much higher burden of hypertension in Oman.

Acknowledgements

The authors duly acknowledge the financial support given by the Research Council as FURAP grant. The authors also acknowledge the cooperation of the Rustaq polyclinic staff.

Conflict of Interest: Nil.

References


